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Abstract: We construct the fiducial model for free-knot splines and de-
rive sufficient conditions to show asymptotic consistency of a multivariate
fiducial estimator. We show that splines of degree four and higher satisfy
those conditions and conduct a simulation study to evaluate quality of the
fiducial estimates compared to the competing Bayesian solution. The fidu-
cial confidence intervals achieve the desired confidence level while tending
to be shorter than the corresponding Bayesian credible interval using the
reference prior.

AMS 2000 subject classifications: Primary 62F99, 62G08; secondary
62P10.
Keywords and phrases: free-knot splines, generalized fiducial inference,
Bernstein-von Mises theorem.

1. Introduction

In statistical practice there is a tension between fitting an easily interpretable
model to our data versus fitting a highly flexible model that fits the data better.
One compromise between these competing ideas is a spline model. The spline
model of degree p can be thought of as connected degree p polynomials with the
requirement that the resulting function be “smooth” at the connection points.
These connection points are usually called “knot points” and the usual smooth-
ness requirement is that the p− 1 derivative exists.

The simplest example is the p = 1 spline with 1 knot point, which is a linear
function with some slope until the knot point, and then continues with a different
slope. The smoothness requirement is that the 0th derivative exists, which is
that the function is continuous at the knot point. The resulting function is often
called the hockey-stick function. A degree p = 2 spline with 1 knot point is just
two quadratic curves joined together such that at the knot point the function
has a 1st derivative and is therefore “smooth”.

When using splines to approximate an unknown but continuous function,
one important question is where to place the knots. In typical non-parametric
function estimation, more knots than are necessary are evenly spread along the
dependent axis and a penalty based on the second derivative (a.k.a. function
“wiggliness”) is introduced [13]. An alternative approach is to use a small num-
ber of knots but carefully place them. This problem of where to place the knots
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is known as the free-knot spline problem. The free-knot spline problem is pri-
marily interested in estimating the location of the knot point and interpreting
it as some sort of threshold [15, 14].

A Bayesian solution to the arbitrary degree p problem with a fixed number of
knot points is given by DiMatteo, Genovese and Kass [2] and they recommend
using a prior of p

(
α, t, σ2

)
∝ σ−2 where σ2 is the usual variance term, α is

the polynomial coefficients, and t is the vector of knot points. The maximum
likelihood solution for the degree p = 1 free-knot spline problem is developed in
[11] and is available in the R package segmented [12].

In this paper, we investigate the fiducial solution to the free-knot spline
problem of degree p ≥ 4. In Section 2, we first extend the univariate fidu-
cial Bernstein-von Mises theorem to the multivariate setting, which shows that
multivariate fiducial estimators have an asymptotic multivariate normal distri-
bution under certain assumptions. In Section 3, we derive the fiducial solution
to the free-knot spline problem, note that the Bernstein-von Mises assumptions
are satisfied and investigate the small sample properties by conducting a sim-
ulation study of degree p = 4 splines comparing the fiducial solution to the
Bayesian solution of DiMatteo, Genovese and Kass [2]. In Section 4 we give our
concluding remarks.

1.1. Introduction to fiducial inference

R.A. Fisher first introduced his idea of fiducial inference [4] to address what he
felt was the major shortcoming of Bayesian inference. His goal was to invent a
posterior-like distribution without the need for a prior distribution. He did not
succeed in developing a general theory for finding these fiducial distributions and
his idea was met with extreme skepticism. In the 1990’s, generalized confidence
intervals [19] were found to have very good small sample properties and Hannig,
Iyer and Patterson [8] shows the connection between generalized confidence
intervals and Fisher’s fiducial inference. Hannig [6] develops a general theory for
developing fiducial solutions which has been used in a variety of contexts. The
solution for wavelets is given by [9]. Other problems include variance components
in normal mixed linear model [3, 1], extreme value models [17], and multiple
comparison issues [18].

The general framework of fiducial inference assumes that the n observed data
can be written as a data generating equation X = G(U, ξ), where ξ is a p length
vector of parameters, and U is a random vector of with a completely known
distribution.

Setting X0 = (X1, . . . , Xp), Xc = (Xp+1, . . . , Xn), U0 = (U1, . . . , Up) and
Uc = (Up+1, . . . , Un) the data generating equation can be factorized as

X0 = G0(U0, ξ) and Xc = Gc(Uc, ξ).

Assuming that for each ξ ∈ Ξ that G0(ξ, ·) and Gc(ξ, ·) are one-to-one and
differentiable and that G0(ξ, ·) also invertible, then Hannig [6] shows that the
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generalized fiducial distribution is

r(ξ|x0) =
fx(x|ξ)J0(x0, ξ)∫

Ξ
fx(x|ξ′)J0(x0, ξ

′)dξ′

where

J0 (x0, ξ) =

∣∣∣∣∣∣
det
(
d
dξG

−1
0 (x0, ξ)

)
det
(

d
dx0

G−1
0 (x0, ξ)

)
∣∣∣∣∣∣

and fx(x|ξ) is the density function. Since the choice to use the first p observa-
tions in the definition of G0 was arbitrary, we could select any p observations
that satisfy the one-to-one, differentiable, and invertible conditions. Hannig sug-
gests [6, 7] letting the Jacobian J (x, ξ) be the average of all possible values of
J0 and using

r(ξ|x) =
fx(x|ξ)J(x, ξ)∫

Ξ
fx(x|ξ′)J(x, ξ′)dξ′

. (1)

This distribution is similar to a Bayesian posterior distribution with the Jaco-
bian taking the role of the prior. This can be seen in the standard regression
problem where the Jacobian simplifies to J (x, ξ) = σ−2h (x). Since h (x) is in
Jacobians in both the numerator and denominator, it will cancel and the fiducial
distribution distribution is the same as the Bayesian posterior with commonly
used reference prior distribution σ−2.

Two numerical issues commonly arise in the evaluation of the fiducial den-
sity. First, it is often not feasible to take the average of all possible values of J0

because the number of possible permutations grows as np. This is often solved
by taking a random selection of possible J0 and using the sample mean as an
approximation to J (x, ξ). A second challenge comes in evaluating the denom-
inator, which is often intractable due to the high number of dimensions. To
address this issue, we use the standard Markov Chain Monte Carlo (MCMC)
techniques to take a random sample from the fiducial density and all subsequent
inference is based on that sample.

2. Asymptotic consistency of the multivariate fiducial estimators

Many estimators have an asymptotic normal distribution and fiducial estimators
are no exception. Conditions A0-A6 in Appendix A are the standard conditions
sufficient to prove that the maximum likelihood estimators to have an asymp-
totic normal distribution [10]. That is, the maximum likelihood estimators ξ̂n
are consistent and

√
n(ξ̂n − ξ) is asymptotically normal with mean 0 and co-

variance matrix [I(ξ)]
−1

, where I (ξ) is the Fisher information matrix.
The Bernstein-von Mises theorem gives conditions (B1-B2 in appendix A.1)

under which the Bayesian posterior distribution is asymptotically normal [16, 5].
In brief, the proof can be thought of as showing that the posterior distribution
becomes close to the distribution of the MLE. Hannig [6] gives sufficient condi-
tions (C1-C2) for the univariate fiducial distribution to converge to the Bayesian



Sonderegger and Hannig/Fiducial free-knot splines 4

posterior which is in turn is close the the MLE distribution. Hannig [6] defines
the following assumptions:

(C1) For any δ > 0

inf
ξ/∈B(ξ0,δ)

mini=1...n log f(ξ, Xi)

|Ln(ξ)− Ln(ξ0)|
Pξ0−→ 0

where Ln (ξ) =
∑n
i=1 log f (xi|ξ) and B (ξ0, δ) is a neighborhood of diam-

eter δ centered at ξ0.

(C2) Let π(ξ) = Eξ0J0(X0, ξ). The Jacobian function J (X, ξ)
a.s.→ π (ξ) uni-

formly on compacts in ξ. In the single variable case, this reduces to as-
sumptions that J (X, ξ) is continuous in ξ, π (ξ) is finite and π (ξ0) > 0,
and for some δ0

Eξ0

(
sup

ξ∈B(ξ0,δ)

J0 (X, ξ)

)
<∞.

The extension to the multi-parameter case follows Yeo and Johnson [20] and
replaces assumption C2 with C2.a,b, and c. Let ω ∈ Ω be a collection of indices
in {1, 2, . . . p} and ω̄ = {1, 2, . . . p}\ω. Define

Jω (xω; ξ) = Eξ0 [J0 (xω,X ω̄; ξ)] .

(C2.a) There exists an integrable and symmetric function g (·) and compact
space B̄ (ξ0, δ) such that for ξ ∈ B̄ (ξ0, δ) and x ∈ Rp then |J (x; ξ)| ≤
g (x).

(C2.b) There exists a sequence of measurable sets SpM such that

P (Rp − ∪∞M=1S
p
M ) = 0.

(C2.c) For each M and for all ω ∈ Ω, Jω (xω; ξ) is equicontinuous in ξ for
{xω} ∈ SωM where SpM = SωM × Sω̄M .

Let Rξ be an observation from the fiducial distribution r(ξ|x) and denote

the density of s =
√
n
(
Rξ − ξ̂n

)
by π∗ (ξ,x).

Theorem 1. Given a random sample of independent observations X1, . . . , Xn,
then under assumptions A0-A6, B1-B2, and C1-C2.c∫

Rp

∣∣∣∣∣π∗ (s,x)−
√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣ ds Pθ0→ 0. (2)

Due to its technical nature, we relegate the proof to Appendix A, section 2.

3. Fiducial free-knot splines

We consider the fiducial free-knot spline solution for splines of degree p ≥ 4. We
first derive the fiducial distribution using a simple set of spline basis functions so
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that the derivatives necessary derivatives can be calculated for the Jacobian. We
then address the asymptotic behavior of the solution by applying Thm:1 to this
solution. We next consider the practical issue of creating a proposal distribution
for the MCMC simulation. Finally, we conduct a simulation study to compare
the fiducial method to the Bayesian solution with reference prior ∝ σ−2 in four
scenarios.

3.1. Deriving the fiducial free-knot spline

Suppose data {xi, yi} for i ∈ [1, . . . , n] are generated from

yi = g (xi|α, t) + σεi

where εi
iid∼ N (0, 1) and g (x|α, t) is a degree p ≥ 4 spline with κ knot points de-

noted t and p+κ+1 polynomial coefficients α. We assume that κ is known, but
the knot locations t are unknown and are the primary target of investigation.
The spline can be written using many different basis functions, but computa-
tional ease, we consider the piecewise truncated polynomial basis

g(xi|α, t) =

p∑
j=0

αjx
j
i +

κ∑
k=1

αp+k (xi − tk)
p
+

where

(u)+ =

{
0 if u < 0

u otherwise

is the truncation operator and has higher precedence than the exponentiation.
This representation makes it clear that the response function changes form at
each knot point. The following derivation of the fiducial solution could, in prin-
ciple, be done using more numerically stable basis functions, but the deriva-
tives become more complicated. Our early work on this problem implemented
a purely numerical solution using the b-spline basis, but the lack of closed form
representation prevented showing that Thm:1 holds.

We derive the fiducial solution the to free-knot spline solution by first invert-
ing the data generating equation and subsequently solving for εi. The Jacobian is
then found by taking the derivative (with respect to the parameters of interest)
of the inversion result.

Specifically, we denote the inverse by G−1
0 (yi, ξ) and let ξ =

{
α, t, σ2

}T
. We

recognize that

εi = G−1
0 (yi, ξ) =

1

σ
(yi − g(xi|θ))

and therefore the partial derivatives with respect to the parameters is

∂G−1
0 (yi, ξ)

∂α
= − 1

σ

(
1, xi, . . . , x

p
i , (xi − t1)

p
+ , . . . , (xi − tκ)

p
+

)
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∂G−1
0 (yi, ξ)

∂t
=
p

σ

(
αp+1 (xi − t1)

p−1
+ , . . . , αp+κ (xi − tκ)

p−1
+

)
∂G−1

0 (yi, ξ)

∂σ2
= − 1

2σ3
(yi − g(xi|θ))

∂G−1
0 (yi, ξ)

∂yi
=

1

σ

where we define 00 = 0 for notational convenience. Let y0 =
{
y(1), . . . , y(l)

}
where l = p+ κ+ 2 be any selection of data points that satisfies the necessary
invertability criteria. The Jacobian using these data points y0 is therefore

J0 (y0, ξ) =

∣∣∣∣ 1

σ2
pκ det

[
Bα Bt Bσ2

]∣∣∣∣
where

Bα =

 1 x(1) . . . xp(1) (x(1) − t1)p+ . . . (x(1) − tκ)p+
...

...
. . .

...
...

. . .
...

1 x(l) . . . xp(l) (x(l) − t1)p+ . . . (x(l) − tκ)p+

 ,

Bt =


α1+p+1

(
x(1) − t1

)p−1

+
. . . α1+p+κ

(
x(1) − tκ

)p−1

+
...

. . .
...

α1+p+1

(
x(l) − t1

)p−1

+
. . . α1+p+κ

(
x(l) − tκ

)p−1

+

 ,
and

Bσ2 =

 −
1
2

(
y(1) − g

(
x(1)|θ

))
...

− 1
2

(
y(l) − g

(
x(l)|θ

))
 .

Because Bσ2 contains a subtraction of a linear combination of columns of Bα

and Bt, the subtraction does not change the determinant and therefore∣∣∣∣ 1

σ2
pκ det

[
Bα Bt Bσ2

]∣∣∣∣ =

∣∣∣∣ 1

2σ2
pκ det

[
Bα Bt B̃σ2

]∣∣∣∣
where

B̃σ2 =

 y(1)

...
y(l)

 .
However the question of which sets of indices satisfy the one-to-one, and

invertibility requirements is not obvious. A sufficient condition is that the set of
indices includes at least two observations from each inter-knot region. Because
we are primarily interested in cases where the number of observations is much
larger than the number of knots, this condition is not onerous.
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Theorem 2. Given g (x|α, t), a free-knot spline of degree 4 or greater with
parameters α and t with truncated polynomial basis functions and observations
with xi a randomly selected element on some contiguous interval [a, b] of R and

yi = g (xi|α, t) + σεi where εi
iid∼ N (0, 1), define ξ =

(
α, t, σ2

)
. Let π∗ (ξ,y) be

the fiducial distribution of Rξ. Then∫
Rp

∣∣∣∣∣π∗ (s,y)−
√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣ ds Pθ0→ 0

Proof. It suffices to show that the free-knot spline satisfies assumptions A0-
A6, B1-B2, C1-C2.c. These are shown in Appendix B, which is available at the
author’s website.

A shortcoming of this proof is the requirement that p ≥ 4, while most many
free-knot spline applications are concerned with degree p = 1 or 2 splines.

3.2. Numerical evaluation of the fiducial density

There are two substantial challenges to numerical evaluation of the fiducial den-
sity. The first is that the Jacobian does not simplify to a “nice” expression
utilizing all of the data. We use the suggestion of Hannig [6] to use the mean
of randomly selected Jacobians as an estimate of J (x, ξ). The second challenge
is that the scaling constant in the denominator of equation 1 is intractable and
we only know the fiducial distribution up to a scaling constant. This is the
same numerical challenge found in evaluating a Bayesian posterior distribution
and we use Markov Chain Monte Carlo (MCMC) methods to select a random
sample from the fiducial distribution. The key step of the MCMC is to produce
good proposal values, which is often difficult when model parameters are highly
correlated. Unfortunately our choice to use the analytically convenient trun-
cated polynomial basis functions results in numerically inconvenient correlated
parameters.

If the knot point locations were known, then the fiducial distribution of the
α and σ2 terms is known and is same as the Bayesian posterior distribution
with reference prior distribution ∝ σ−2. More formally, letting X = [Bα,Bt]
be the design matrix with fixed and known knot points, the fiducial distribution

is α|σ2, y ∼ N (α̂, Vα) where α̂ =
(
XTX

)−1

XTy and Vα =
(
XTX

)−1

.

Similarly the marginal distribution of σ2|y is a scaled inverse-χ2 distribution,
σ2|y ∼ Inv-χ2

(
n− p− κ− 1, s2

)
where s2 is the usual mean squared error term

s2 = (y −Xα̂)
T

(y −Xα̂) /(n − p − κ − 1). We denote the product of these
distributions as the fixed fiducial distribution.

Unfortunately the fiducial distribution of σ2 and α conditioned on the knot
point locations t is not the above fixed fiducial distribution because the Jacobian
term cannot be factored into terms that contain only t parameters or only
α terms. However, the fixed fiducial distribution do provide useful proposal
distribution in a MCMC estimation.
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The procedure for creating a proposed value in the Markov chain is to take
the current knot locations and perturb them by adding a small amount of noise.
The proposed knots are t∗ = t + u∗ where u∗ ∼ MVN

(
0, σ2

kIk
)
, Ik is the

identity matrix and σ2
k is the tuning parameter for the MCMC and reflects how

much each knot point is “jittered”. We then take these proposed knot points and
consider them as known and use the aforementioned fixed fiducial distributions
to produce proposed values for σ2 and then α.

These three proposal distributions are multiplied to create the total proposal
distribution T (ξ∗|ξ). For the given proposed set of parameters, if the ratio

r =
f (y|ξ∗)
f (y|ξ)

T (ξ|ξ∗)
T (ξ∗|ξ)

is greater than a Uniform(0, 1) random deviate, we accept the proposed value as
the next value in the Markov chain, otherwise the current vector of parameters
is used.

The use of the fixed fiducial distribution is similar in spirit to the method
of DiMatteo, Genovese and Kass [2] where they integrate out the α and σ2

parameters and consider only the distribution of the knot points t. The difference
is that their prior factored nicely whereas the Jacobian does not.

3.3. Simulation study for degree four splines

The simulation study will compare the fiducial method to the Bayesian method
on four different degree four splines, all defined on domain x ∈ [0, 1] and with a
similar range of y values.

The software we used to evaluate the performance of the fiducial solution
compared to the Bayesian method with prior ∝ σ−2 used the same software
for implementing the MCMC and generating proposed values, with the only
difference in the software being whether the likelihood was multiplied by the
Bayesian prior distribution or the calculated Jacobian.

The first spline has a single knot point at the center of the range of x values.
The second has three knot points even spread through the x values. The third
function also has three knot points, but the knots are not evenly distributed
across the x values, instead they are clustered towards the left. The final function
has three knot points evenly spread on the x-axis, but has a subtle change to
the function at the first knot point, a larger change at the middle knot point
and a large change at final knot. These functions are shown in figure 1.

For each scenario, we compared the methods using two different levels of
variance and two samples sizes. The sample sizes n = {40, 100} were chosen
to reflect real world cases of data scarcity and moderate abundance. The two
variance levels reflect an idealistically low level of variance (σ = 0.1) and a more
realistic “signal-to-noise” level (σ = 0.25) commonly seen in the authors’ applied
work.

We consider coverage rates (figure 2) of the fiducial credible intervals of the
true knot point values. In the ’coverage plots’ presented, the x-axis denotes
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Scenario Knot Point(s) Spline Coefficients

Single Knot 0.5 0, 8,−60, 144,−108, 256
3 Knots - Simple 0.25, 0.50, 0.75 0, 30,−203, 386,−179,−276, 854, 270

3 Knots - Clustered 0.20, 0.40, 0.60 −1, 47,−397, 967,−640,−510, 2002,−1043
3 Knots - Subtle 0.25, 0.50, 0.75 0,−3, 2, 1, 1, 10,−100, 600

Table 1
Coefficients defining the four different simulation scenarios.
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Fig 1. Degree Four Examples - The examples shown are the high sample size and high vari-
ability case. Upper left panel - the “Single” knot case; upper right panel - 3 knots evenly
spread across the x-axis which we refer to as the “simple” 3 knot case. Lower left panel - 3
knots “clustered” to the left side of the x-axis; lower right panel - 3 evenly spaced knots with
with a “subtle” effect initially but with increasing effect size from left to right.
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the desired confidence level and the y-axis is the observed coverage rate in the
experiment. If the observed coverage rate is below the equivalence line (y = x),
then the method is considered liberal and if the observed rate is above the
equivalence line then the method is conservative. Ideally a method would lie
exactly on the equivalence line but a conservative method is more preferable to
a liberal because claiming a 95% coverage rate when in truth the coverage rate
is less is a more serious error than having the true coverage rate being larger
than claimed. The only complaint against a conservative method is that the
lengths of confidence intervals are larger than necessary to achieve the desired
confidence level.

In the coverage plots presented, the oval lines around the equivalence line are
the region in which we would expect the coverage rates to lie in due to stochastic
variation in the simulation. For each simulation, the α-level necessary for the
inclusion of the true parameter value in a confidence interval was calculated.
Since the data is actually generated from the model we are fitting, then these α-
levels should follow a uniform distribution if the coverage rates are correct. The
jth ordered statistic of these therefore follows a Beta (j, n− j + 1) distribution
and appropriate 95% point-wise confidence region can be calculated from this.

For each of the 16 combinations of function type, sample size and variance,
1000 simulations were performed and took approximately four days to run on
a desktop computer. For the three knot simple case, a fiducial analysis took
≈ 100 seconds while the Bayesian solution took ≈ 10 seconds. The reason for
this drastic difference is that for every evaluation of the fiducial density, the
jacobian at that point must be estimated from averaging repeated samples of
J0 (x0, ξ).

3.4. Simulation Results

We display only the results of the “3 Knot - Clustered” function here and
graphics of the other functions to the appendix because the results were similar.

The coverage rates (figure 2) for the for the fiducial method was typically
slightly higher than the desired level, but was generally within the expected
coverage region given the sample size. The Bayesian method also generally con-
sistent with the desired rate, but was liberal in a few instances. For the “single
knot case”, both the fiducial and Bayesian methods were neither conservative
nor liberal. In the “simple three knot case”, the Bayesian method was liberal for
all knots and sample sizes in the high variance cases, while the fiducial method
was liberal for only the first knot in the high variance high sample case. In
the “three knot clustered” case, the Bayesian method is conservative for knots
one and two, but liberal for the third. In contrast the fiducial intervals were
conservative for knot one. In the “three knot subtle” case the Bayesian method
was conservative for knot one and two. The fiducial method was conservative
for knot one in the small variance case. Overall, the fiducial estimator tends to
have a coverage rate that is closer to the nominal rate than the Bayesian.

The lengths of the 95% confidence (or credible) interval lengths showed a
consistent trend across our simulation (figure 3). The Bayesian intervals were
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Fig 2. Coverage rates for the “3 Knot - Clustered” simulation. The color (red, blue) represents
the method (fiducial, Bayesian). The topmost panel is the coverage of knot 1 in the sigma =
0.1, n = 40 simulation. Graphs of the coverage rate for the other scenarios was similar and
can be found in Appendix B.
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longer in every scenario we examined, however the difference was the smallest
in the single knot case.

4. Conclusions

Free-knot splines are computationally challenging to fit, but in instances where
inference on the knot points is desired, we believe that the fiducial method is
a viable method for analysis. Simulation shows that the fiducial method is an
effective method for the high degree free-knot spline problem and is superior
to the Bayesian solution with prior ∝ σ−2. This is consistent with our previous
experience of the fiducial method being equivalent to or better than the standard
Bayesian solution derived using default prior [1].

The foundational theory for fiducial inference is given in [6] and this paper
expands the fiducial Bernstein-von Mises theorem to the multivariate setting.
However, this result is not the most general result possible due to the restrictive
assumption of continuous fourth derivatives. In particular we believe that re-
placing the standard differentiability conditions used in the proof of Theorem 1
with Le Cam’s continuity in quadratic mean assumptions [16] would allow us to
relax the differentiability assumptions to obtain the most general Bernstein-von
Mises type theorem for fiducial distributions. This is a subject of future work.

One case where continuous derivatives do not exist is the case of free-knot
splines of degree one. These are of great interest due to the interpretability of
the knot point as a change point. Based on our simulations results we conjecture
that asymptotic normality holds even in this case. Further investigation into the
the behavior of the fiducial method in this case relative to both the Bayesian
solution and segmented regression [11] are of interest.

For this paper, we assume that the number of knot points to be fit is known.
In some cases where the physical system under investigation provides insight
into the number of knots. In the cases where the number of knots is not known,
a reversible jump MCMC algorithm could allow for model selection, but would
require some penalty term on models of increasing complexity.

Perhaps the largest reason for practitioners to not use new methodologies
is the lack of accessible software packages. If a new methodology has no freely
available software, or requires expensive software packages (such as Matlab and
its associated toolboxes) applied researchers tend to not adopt a method. To
alleviate this issue, we have provided the R package ’FiducialFreeKnotSplines’
that contains the software used in the simulation studies conducted for this
paper and is freely available on the Comprehensive R Archive Network (CRAN).
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Fig 3. Confidence interval lengths for the “3 Knot - Clustered” simulation. The color (red,
blue) represents the method (fiducial, Bayesian). The topmost panel is the coverage of knot 1
in the sigma = 0.1, n = 40 simulation. Graphs of the interval lengths for the other scenarios
was similar and can be found in Appendix B.
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Appendix A: Proof of asymptotic normality of fiducial estimators

We start with several assumptions. The assumptions A0-A6 are sufficient for
the maximum likelihood estimate to converge asymptotically to a normal dis-
tribution and can be found in Lehmann and Casella [10] as 6.3 (A0)-(A2) and
6.5 (A)-(D). The assumption B2 shows that the Jacobian converges to a prior
[6] and B1 is the assumption necessary for the Bayesian solution to converges
to that of the MLE [5, Theorem 1.4.1].

A.1. Assumptions

A.1.1. Conditions for asymptotic normality of the MLE

(A0) The distributions Pξ are distinct.
(A1) The set {x : f(x|ξ) > 0} is independent of the choice of ξ.
(A2) The data X = {X1, . . . , Xn} are iid with probability density f(·|ξ).
(A3) There exists an open neighborhood about the true parameter value

ξ0 such that all third partial derivatives
(
∂3/∂ξi∂ξj∂ξk

)
f(x|ξ) exist

in the neighborhood, denoted by B(ξ0, δ).
(A4) The first and second derivatives of L(ξ, x) = log f(x|ξ) satisfy

Eξ

[
∂

∂ξj
L(ξ, x)

]
= 0

and

Ij,k(ξ) = Eξ

[
∂

∂ξj
L(ξ, x) · ∂

∂ξk
L(ξ, x)

]
= −Eξ

[
∂2

∂ξj∂ξk
L(ξ, x)

]
.

(A5) The information matrix I(ξ) is positive definite for all ξ ∈ B(ξ0, δ)
(A6) There exists functions Mjkl(x) such that

sup
ξ∈B(ξ0,δ)

∣∣∣∣ ∂3

∂ξj∂ξk∂ξl
L(ξ, x)

∣∣∣∣ ≤Mj,k,l(x) and Eξ0Mj,k,l(x) <∞

A.1.2. Conditions for the Bayesian posterior distribution to be close to that of
the MLE.

Let π(ξ) = Eξ0J0(X0, ξ) and Ln(ξ) =
∑
L(ξ, Xi)

(B1) For any δ > 0 there exists ε > 0 such that

Pξ0

{
sup

ξ/∈B(ξ0,δ)

1

n
(Ln(ξ)− Ln(ξ0)) ≤ −ε

}
→ 1

(B2) π (ξ) is positive at ξ0
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A.1.3. Conditions for showing that the fiducial distribution is close to the
Bayesian posterior

(C1) For any δ > 0

inf
ξ/∈B(ξ0,δ)

mini=1...n L(ξ, Xi)

|Ln(ξ)− Ln(ξ0)|
Pξ0−→ 0

(C2) Let π(ξ) = Eξ0J0(X0, ξ). The Jacobian function J (X, ξ)
a.s.→ π (ξ)

uniformly on compacts in ξ. In the single variable case, this reduces
to J (X, ξ) is continuous in ξ, π (ξ) is finite and π (ξ0) > 0, and for
some δ0

Eξ0

(
sup

ξ∈B(ξ0,δ)

J0 (X, ξ)

)
<∞.

In the multivariate case, we follow Yeo and Johnson (2001). Let

Jj (x1, . . . , xj ; ξ) = Eξ0 [J0 (x1, . . . , xj , Xj+1, . . . , Xk; ξ)] .

(C2.a) There exists a integrable and symmetric functions g (x1, . . . , xj) and
compact space B̄ (ξ0, δ) such that for ξ ∈ B̄ (ξ0, δ) then |Jj (x1, . . . , xj ; ξ)| ≤
g (x1, . . . , xj) for j = 1, . . . , k.

(C2.b) There exists a sequence of measurable sets SkM such that

P
(
Rk − ∪∞M=1S

k
M

)
= 0

(C2.c) For each M and for all j ∈ 1, . . . , k, Jj (x1, . . . , xj ; ξ) is equicontinu-

ous in ξ for {x1, . . . , xj} ∈ SjM where SkM = SjMS
k−j
M .

A.2. Proof of asymptotic normality of multivariate fiducial
estimators

We now prove the the asymptotic normality (theorem 1) for multivariate Fidu-
cial estimators.

Proof. Assume without loss of generality that ξ ∈ Ξ = Rp. We denote Jn (xn, ξ)
as the average of all possible Jacobians over a sample of size n and π (ξ) =
Eξ0J0 (x, ξ). Assumption C2 and the uniform strong law of large numbers for

U-statistics imply that Jn (x, ξ)
a.s.→ π (ξ) uniformly in ξ ∈ B̄ (ξ0, δ) and that

π (ξ) is continuous. Therefore

sup
ξ∈B̄(ξ0,δ)

|Jn (xn, ξ)− π (ξ)| → 0 Pξ0 a.s.

The multivariate proof now proceeds in a similar fashion as the univariate case.
Let
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π∗ (s,x) =
Jn

(
xn, ξ̂n + s√

n

)
f
(
xn|ξ̂n + s√

n

)
∫
Rp Jn

(
xn, ξ̂n + t√

n

)
f
(
xn|ξ̂n + t√

n

)
dt

=
Jn

(
xn, ξ̂n + s√

n

)
exp

[
Ln

(
ξ̂n + s√

n

)]
∫
Rp Jn

(
xn, ξ̂n + t√

n

)
exp

[
Ln

(
ξ̂n + t√

n

)]
dt

=
Jn

(
xn, ξ̂n + s√

n

)
exp

[
Ln

(
ξ̂n + s√

n

)
− Ln

(
ξ̂n

)]
∫
Rp Jn

(
xn, ξ̂n + t√

n

)
exp

[
Ln

(
ξ̂n + t√

n

)
− Ln

(
ξ̂n

)]
dt

and just as Ghosh and Ramamoorthi [5], we let H = − 1
n

∂
∂ξ∂ξLn

(
ξ̂n

)
and we

notice that H → I (ξ0) a.s. Pξ0 . It will be sufficient to prove∫
Rp

∣∣∣∣Jn(xn, ξ̂n +
t√
n

)
exp

[
Ln

(
ξ̂n +

t√
n

)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−tT I (ξ0) t

2

]∣∣∣∣ dt Pξ0→ 0 (3)

Let ti represent the ith component of vector t. By Taylor’s Theorem, we can
compute

Ln

(
ξ̂n + t/

√
n
)

= Ln

(
ξ̂n

)
+

p∑
i=1

(
ti√
n

)
∂

∂ξi
Ln

(
ξ̂n

)
+

1

2

p∑
i=1

p∑
j=1

(
titj

(
√
n)

2

∂

∂ξi∂ξj
Ln

(
ξ̂n

))

+
1

6

p∑
i=1

p∑
j=1

p∑
k=1

(
titjtk

(
√
n)

3

∂

∂ξi∂ξj∂ξk
Ln
(
ξ′
))

= Ln

(
ξ̂n

)
− t

THt

2
+Rn

for some ξ′ ∈
[
ξ̂n, ξ̂n + t/

√
n
]
. Notice that Rn = Op

(
‖t‖ /n3/2

)
.

Given any 0 < δ < δ0 and c > 0, we break Rp into three regions:

A1 =
{
t : ‖t‖ < c log

√
n
}

A2 =
{
t : c log

√
n < ‖t‖ < δ

√
n
}

A3 =
{
t : δ

√
n < ‖t‖

}
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On A1 ∪A2 we compute∫
A1∪A2

∣∣∣Jn (xn, ξ̂n + t/
√
n
)

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−1

2
t′I (ξ0) t

]∣∣∣∣ dt
≤

∫
A1∪A2

∣∣∣Jn (xn, ξ̂n + t/
√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

· exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

+

∫
A1∪A2

∣∣∣π (ξ̂n + t/
√
n
)

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−1

2
t′I (ξ0) t

]∣∣∣∣ dt
Since π (·) is a proper prior on A1 ∪A2, then the second term goes to 0 by the
Bayesian Bernstein-von Mises theorem. Next we notice that∫

A1∪A2

∣∣∣Jn (x, ξ̂n + t/
√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

· exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

≤ sup
t∈A1∪A2

∣∣∣Jn (x, ξ̂n + t/
√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

·
∫
A1∪A2

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

Since
√
n
(
ξ̂n − ξ0

)
D→ N

(
0, I (ξ0)

−1
)

, then

Pξ0

[{
ξ̂n + t/

√
n; t ∈ A1 ∪A2

}
⊂ B (ξ0, δ0)

]
→ 1.

Furthermore, since Ln

(
ξ̂n + t/

√
n
)
−Ln

(
ξ̂n

)
= − t

THt
2 +Rn then the integral

converges in probability to 1. Since maxt∈A1∪A2
‖t/
√
n‖ ≤ δ and Jn → π, then

the term → 0 in probability.
Next we turn to∫

A3

∣∣∣∣Jn(xn, ξ̂n +
s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−tT I (ξ0) t

2

]∣∣∣∣ dt
≤

∫
A3

Jn

(
xi, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

+

∫
A3

π (ξ0) exp

[
−tT I (ξ0) t

2

]
dt
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The second integral goes to 0 in Pξ0 probability because minA3 ‖t‖ → ∞. As
for the first integral,∫

A3

Jn

(
x, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

=
1

n

n∑
i=1

∫
A3

J

(
xi, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

=
1

n

n∑
i=1

∫
A3

J

(
xi, ξ̂n +

s√
n

)
f

(
xi|ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)
− log f

(
xi|ξ̂n +

s√
n

)]
dt

Because J (·) is a probability measure, then so is J (·) f (·). Assumption C1
assures that the exponent goes to −∞ and therefore the integral converges to 0
in probability.

Having shown Eq:3, we now follow Ghosh and Ramamoorthi [5] and let

Cn =

∫
Rp

∣∣∣∣Jn(xn, ξ̂n +
t√
n

)
exp

[
Ln

(
ξ̂n +

t√
n

)
− Ln

(
ξ̂n

)]∣∣∣∣ dt
then the main result to be proved (Eq:2) becomes

C−1
n

{∫
Rp

∣∣∣∣Jn(xn, ξ̂n +
s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
.

−Cn
√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣
}
ds

Pξ0→ 0(4)

Because∫
Rp

Jn

(
xn, ξ̂n

)
exp

[
−s

THs

2

]
ds = Jn

(
xn, ξ̂n

)∫
Rp

exp

[
−s

THs

2

]
ds

= Jn

(
xn, ξ̂n

) √
2π√

det (H)

a.s.→ π (ξ0)

√
2π

det (I (ξ0))

and Eq:3 imply that Cn
P→ π (ξ0)

√
2π

det(I(ξ0)) it is enough to show that the

integral in Eq:4 goes to 0 in probability. This integral is less than I1 + I2 where

I1 =

∫
RP

∣∣∣∣Jn(xn, ξ̂n +
s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
−Jn

(
xn, ξ̂n

)
exp

[
−sTHs

2

]∣∣∣∣ ds
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and

I2 =

∫
RP

∣∣∣∣∣Jn (xn, ξ̂n) exp

[
−sTHs

2

]
− Cn

√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣ ds.
Eq:3 shows that I1 → 0 in probability and I2 is

I2 =

∣∣∣∣∣Jn (xn, ξ̂n)− Cn
√
det |I (ξ0)|√

2π

∣∣∣∣∣
∫
RP

exp

[
−sTHs

2

]
ds

P→ 0

because Jn

(
xn, ξ̂n

)
P→ π (ξ0) and Cn

P→ π (ξ0)
√

2π
det(I(ξ0)) .
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