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Abstract The effect that measurement error of predictor

variables has on regression inference is well known in the

statistical literature. However, the influence of measure-

ment error on the ability to quantify relationships between

chemical stressors and biological responses has received

little attention in ecotoxicology. We present a common

data-collection scenario and demonstrate that the relation-

ship between explanatory and response variables is con-

sistently underestimated when measurement error is

ignored. A straightforward extension of the regression

calibration method is to use a nonparametric method to

smooth the predictor variable with respect to another

covariate (e.g., time) and using the smoothed predictor to

estimate the response variable. We conducted a simulation

study to compare the effectiveness of the proposed method

to the naive analysis that ignores measurement error. We

conclude that the method satisfactorily addresses the

problem when measurement error is moderate to large, and

does not result in a noticeable loss of power in the case

where measurement error is absent.
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Introduction

In ecological risk assessment, it is common to take a mea-

surement of contaminant concentration and use that single

observation to represent exposure that an organism would

experience over some duration of time. This is a legitimate

practice if there is very little temporal or spatial variation in

contaminant concentrations, however, that is rarely the

case. While spatial variation in contaminant concentrations

resulting from patchy distributions in the field may be

quantified by taking replicate samples, experimental

designs rarely account for significant temporal variation.

Because of natural variation in stream discharge, tempera-

ture, pH and other physicochemical characteristics, water

contaminant concentrations often show significant temporal

variation. (Clements 2004) reported significant seasonal

variation in heavy metal concentrations associated with

stream discharge. Researchers measuring diel (24 h) cycles

of heavy metals have reported that concentrations of Zn can

increase by a factor of five from afternoon minimum values

to early morning maximum levels (Nimick et al. 2003).

While every attempt can be made to collect water quality

samples at the same time every year, natural fluctuations

will cause the samples to be taken at different points of the

daily and annual cycles.

Measurement error is a commonly studied topic in sta-

tistics (Fuller 1987; Carroll et al. 2006; Cheng and van

Ness 1999). The most well known result is that for simple

linear regression, uncertainty in measuring the predictor

variable leads to a substantial underestimation of the

relationship between the predictor and response variable.

Consequently, if measurement errors are present but

unaccounted for in a statistical model, the resulting infer-

ence will be less likely to detect an association between

contaminants and responses and the magnitude of the
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association between contaminants and responses will typ-

ically be underestimated.

(Nimick et al. 2003) recommends modifying traditional

field sampling methods in order to account for measure-

ment error but this presupposes that the error mechanism is

known and that the increased sampling is practical. (Yuan

2007) provides a post hoc method of including measure-

ment error in data analysis. For the method we describe, the

sampling design is created with measurement error in

mind, and the additional fieldwork is not too burdensome.

Methods

Data used for this analysis were collected from the

Arkansas River, a metal-polluted stream located in central

Colorado. Elevated concentrations of heavy metals (Cd,

Cu, and Zn) were consistently reported downstream of

Leadville, CO and frequently exceeded acutely toxic levels

(Clements 2004). From 1989 to 2004 water chemistry,

habitat quality, and abundance of macroinvertebrates were

measured at several monitoring stations upstream and

downstream from metal sources. In 1991, after 2 years of

monitoring, state and federal agencies began a compre-

hensive restoration effort to improve water quality in the

river.

The goal of this long-term study was to use the rela-

tionship between metal concentration and macroinverte-

brate community structure to assess effectiveness of

remediation and resulting improvements in water quality.

Because the stream receives a mixture of heavy metals (Cd,

Cu, Zn), we used cumulative criterion units (CCU) to

quantify metal contamination (Clements et al. 2000). CCU

is defined as the ratio of the measured metal concentration

to the hardness adjusted chronic criterion concentration,

summed for each metal. In this research, the abundance of

metal-sensitive mayflies (Ephemeroptera:Heptageniidae)

was used as an indicator of stream health. We used a

square-root transformation of mayfly abundances to stabi-

lize the variance. In this paper we report data from station

AR1 (Clements 2004) collected from 1989 to 2004. During

the spring and fall of each year, 5 replicate macroinverte-

brate samples were collected along with a single water

sample for analysis of heavy metals. Because metal con-

centrations were represented by a single water sample on

each sampling occasion, and because those measurements

show considerable diel and seasonal variability (Clements,

unpublished data), significant measurement error may exist

in these data.

Because of seasonal variation in metal contamination and

invertebrate colonization from an upstream source, spring

and fall mayfly densities show surprisingly little correlation.

To more clearly demonstrate the method used, in this paper

we analyze only the fall mayfly samples. Spring CCU values

tend to be higher and are more variable than the fall values

and that any yearly averaging necessitates a statistical

modification similar to the method being proposed.

Due to the remediation efforts above the Arkansas

River, we expected a long-term decreasing trend in CCU,

but the exact shape of this relationship is unknown. We

modeled this relationship in two ways. First, we examined

only the fall CCU values and fit a non-parametric function

with no constraints on its shape. Second, created a model

that incorporates both the spring and fall water quality

measurements and our knowledge that a strong remediation

effort occurred in the summer of 1991. The remediation is

modeled by allowing a discontinuity in the smoothing

function, but unfortunately this leaves only 4 data points to

estimate the curve before remediation. Due to this data

scarcity, we restrict our smoothing function to a flat line

over this region.

We refer to the regression of mayfly counts on the raw

CCU values as the naive estimator of the slope parameter,

the regression onto the smoothed fall CCU values as the

de-noised estimator of the slope parameter, and the

regression onto the smoothed CCU values where we used

both fall and spring CCU values and allow a discontinuity

in 1991 as the sophisticated de-noised model.

Mathematical details

Consider the simple regression model

Y ¼ aþ bxþ e where e�Nð0; r2Þ ð1Þ

Suppose that we observe the data {Xi, Yi} where Xi ¼ xi þ di

and di�Nð0; s2Þ for i in {1,…,n}. In addition, auxiliary

information (such as time) is available such that x = g(t). It

is reasonable to use the observed data {Xi, ti} to estimate the

true values of the covariate {xi}. The observed {Yi} can then

be regressed onto these de-noised estimates fx̂ig.
Regression calibration is typically done by performing

a linear regression of {Xi} onto {ti} in order to estimate fx̂ig,
but more sophisticated modeling methods could also be used.

Nonparametric smoothers are often more convenient

because the researcher doesn’t have worry about imposing a

functional form on the relationship, only restrictions on the

continuity or smoothness. Because the relationship between

{Xi} and {ti} is typically not of interest, the difficulty of

interpretation of the nonparametric smoother is not an issue.

The smoother could also incorporate system knowledge to

impose physical constrains on the prediction (e.g. the

smoothed values must be positive, the relationship form is

known over an interval but is unknown over the rest).

The two most common approaches to finding the de-

noised or ‘smoothed’ version of {Xi} using nonparametric
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function estimation are kernel estimation (Fan and Gijbels

1996) and regression splines (Green and Silverman 1993;

Ruppert et al. 2003). Although both approaches are

appropriate, preliminary analyses showed similar results

and due to computational advantages, we restrict our dis-

cussion to regression splines.

(Cai et al. 2000) introduced the methodology of

regressing the response onto the smoothed predictor using a

wavelet smoother and (Cui et al. 2002) extended these

ideas to the kernel regression smoother. Both papers

demonstrated the asymptotic normality and consistency of

the slope parameter of the de-noised variable.

A researcher cannot simply use the de-noised version of

an explanatory variable in subsequent analysis and infer-

ence without adjustment. While it is possible to derive the

asymptotic distribution of b̂ in certain instances, in general,

bootstrap methods are easily used to calculate desired

confidence intervals (CI). Because observations were col-

lected at specific time points, the simple method of re-

sampling the vectors {Yi, Xi, ti} does not work. Instead, a

bootstrap sample is created by independently re-sampling

estimates of the measurement errors di ¼ xi � x̂i and pro-

cess errors ei ¼ yi � ŷi and then adding those errors to the

estimatedX̂i; Ŷi values. To be explicit, for the ith obser-

vation of the bootstrap sample, two indices are randomly

selected (say j,k) and the bootstrap observation is

fX̂i þ dj; Ŷi þ ek; tig. We provide R code to perform the

bootstrap procedure in Appendix.

Simulation study

To demonstrate the effect of ignoring measurement error,

we examine three examples of the measurement error

model (1) where a = 0, b = 1, and g(t) = (1 - t)2 for

t 2 0; 1½ �. In the first case d is small (attenuation factor

k&0.81) reflecting an instance where measurement error

should not have a substantial effect. The second case shows

d = r (k&0.29) and the third case has d = 2r (k&0.17).

We ran 2000 simulations for each case. For the de-noising

procedure, each simulation inference was based on 500

bootstrap samples. The output of this simulation is shown

in Table 1.

When measurement error was the same or greater than

the response error, the de-noising procedure was clearly

superior to the naive estimator. The bias of the naive

estimator was quite large and the confidence interval cov-

erage rates (percent of CIs that contain the true parameter

value) were far from the desired 95% rate. The de-noising

procedure handled the measurement error reasonably well

in that the observed bias is quite small. The observed

coverage rates were close to the desired 95% level.

In the case where the measurement error standard

deviation d was small, the de-noising procedure did not

provide any benefit over standard linear model procedure;

however, the procedure did not perform substantially

worse. Neither procedure had appreciable bias, the average

lengths of the 95% CIs were roughly equivalent, and

coverage rates were close to the desired 95%.

Results and discussion

Metal concentrations (as CCU) decreased over time as a

result of remediation activities in the Arkansas River

(Fig. 1). Standard errors and confidence intervals for the

naive estimator were based on assumed asymptotic nor-

mality of the error terms. Confidence intervals for the both

Table 1 Simulation results comparing the naive estimator that ignores measurement error with the proposed de-noising procedure for a variety

of parameter combinations

Parameters Ignoring measurement error De-noising procedure

Sigma Delta N Bias Length Coverage Bias Length Coverage

0.2 0.02 30 -0.006 0.480 0.952 -0.002 0.441 0.934

60 -0.002 0.340 0.950 0.003 0.326 0.939

120 -0.005 0.240 0.951 0.000 0.235 0.946

0.2 30 -0.281 0.538 0.442 0.004 0.671 0.943

60 -0.293 0.372 0.125 0.003 0.476 0.940

120 -0.301 0.262 0.004 0.006 0.340 0.946

0.4 30 -0.611 0.488 0.002 0.030 1.631 0.940

60 -0.628 0.329 0.000 0.010 0.885 0.944

120 -0.635 0.228 0.000 0.003 0.568 0.939

The bias column is difference between the mean estimate and the true parameter value

Length is the average length of the resulting 95% CI

Coverage is the proportion of simulations whose 95% CI contained the true parameter value
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de-noised estimators were based on n = 10,000 bootstrap

samples. The confidence interval lengths for the naive and

de-noised estimators are similar, indicating the small loss

of power associated with using the more complicated

estimator (Table 2). The most important difference is that

the naive estimator has a much smaller magnitude than

either of the de-noised estimators. The boundaries of the CI

for the de-noised estimator have a substantially larger

magnitude than those of the naive estimator. These results

indicate that by ignoring measurement error, scientists risk

underestimating the relationship between the abundance of

metal-sensitive mayflies and heavy metal pollution.

Conclusions

The relationship between chemical concentrations and

biological responses is an integral component of ecological

risk assessment. Thus, any factor that consistently affects

the nature of this relationship has the potential to funda-

mentally alter our understanding of how chemicals impact

ecosystems. (Nimick et al. 2003) suggested that because of

temporal variation in contaminant concentrations, it might

be necessary to modify traditional field sampling protocols

in aquatic ecosystems. We agree with this recommenda-

tion, but feel the potential effects of unmeasured temporal

variation may be considerably more insidious. Our results

suggest that temporal variation in contaminant concentra-

tions introduces significant bias into the concentration-

response relationship. This bias typically results in an

underestimation of the strength of the relationship between

contaminants and biological responses. Field data from the

Arkansas River showed that the slope estimates (b̂) of the

relationship between abundance of mayflies and metal

concentration increased in magnitude by approximately

14–34% when we accounted for measurement error. While

this systematic bias is relatively small if the measurement

error is small compared to the overall variability, it

increases as measurement errors increase. Our simulation

results indicated that the naive estimator consistently pro-

vided more biased estimates of slope parameters and mis-

leading CIs as the amount of measurement error increased.

While the lengths of the CIs for the de-noised estimator

were longer in high measurement error cases, the estimator

was effectively unbiased and provided CIs that contained

the true parameter value at the desired 95% rate.

Although this paper has only illustrated the 1-dimen-

sional case, this procedure can easily be extended to the

multivariate case in several ways. First, Eq. (1) could

include other covariates that do not have measurement

error. Second, the smoothed variable could be a function of

2 or more auxiliary variables. Third, the auxiliary variable

could be used to smooth several covariates.

The de-noising procedure’s success is based on the

smoother being a consistent estimator of {xi}. For both the

spline and local polynomial regression smoothers, all that

is necessary is for the measurement errors to have mean 0.

If that is not the case, an appropriate adjustment to the

modeling of g(t) must be made.

The procedure suggested in this paper is applicable in a

large number of situations and is relatively easy to imple-

ment. There appears to be little cost in inferential power

when measurement error is small, and reduces bias in

parameter estimates when measurement error is moderate

to large. As such, there is little reason not to use such a

procedure in situations where appropriate covariates are

available.
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Appendix: R code for the bootstrap procedures used to

calculate confidence intervals for the de-noising

procedure.

# Assuming X,Y,time vectors are defined

library(‘SemiPar’) # for the smoothing function ‘spm’

n \ - length(X) # number of observations

# Find the smoothed CCU

model.spm \ - spm(X * f(time));

smoothed.X \ - model.spm$fit$fitted;

# Fit the regression of Y onto smoothed X

model.dn \ - lm(Y * smoothed.X);

Y.hat \ - model.dn$fitted;

# Find the estimated values of epsilons and deltas

e \ - Y - model.dn$fitted.values;

d \ - X - smoothed.X;

# Bootstrap from e,d

bootstrap.slope \ - rep(NA, 1000);

for(i in 1:10000){

index1 \ - sample(1:n, n, replace = T);

index2 \ - sample(1:n, n, replace = T);

X.boot \ - smoothed.X ? d[index1];

Y.boot \ - Y.hat ? e[index2];

model.spm \ - spm(X.boot * f(time));

smoothed.X \ - model.spm$fit$fitted;

model \ - lm(Y * smoothed.X);

bootstrap.slope[i] \ - model$coefficients;

}

quantile(bootstrap.slope, p=c(0.025, 0.975));

References

Cai Z, Naik PA, Tsai CL (2000) De-noised least squares estimators:

an application to estimating advertisement effectiveness. Statist

Sinica 10:1231–1243

Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006)

Measurement error in nonlinear models: a modern perspective.

Chapman & Hall/CRC, Boca Raton, FL

Cheng C-L, van Ness JW (1999) Statistical regression with

measurement error. Oxford University Press Inc., New York

Clements WH (2004) Small-scale experiments support causal

relationships between metal contamination and macroinverte-

brate community responses. Ecol Appl 14:954–967. doi:10.1890/

03-5009

Clements WH, Carlisle DM, Lazorchak JM, Johnson PC (2000) Heavy

metals structure benthic communities in Colorado mountain

streams. Ecol Appl 10:626–638. doi:10.1890/1051-0761(2000)

010[0626:HMSBCI]2.0.CO;2

Cui H, He X, Zhu L (2002) On regression estimators with de-noised

variables. Statist Sinica 12:1191–1205

Fan J, Gijbels I (1996) Local polynomial modeling and its applica-

tions. Chapman & Hall, London

Fuller W (1987) Measurement error models. John Wiley and Sons,

Inc, New York, NY

Green PJ, Silverman BW (1993) Nonparametric regression and

generalized linear models: a roughness penalty approach.

Chapman & Hall, New York, NY

Nimick DA, Gammons CH, Cleasby TE, Madison JP, Skaar D, Brick

CM (2003) Diel cycles in dissolved metal concentrations in

streams: occurrence and possible causes. Water Resour Res 39:

1247–1263. doi:10.1029/2002WR001571

Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression.

Cambridge University Press, New York

Yuan LL (2007) Effects of measurement error on inferences of

environmental conditions. J N Am Benthol Soc 26:152–163. doi:

10.1899/0887-3593(2007)26[152:EOMEOI]2.0.CO;2

828 D. L. Sonderegger et al.

123

http://dx.doi.org/10.1890/03-5009
http://dx.doi.org/10.1890/03-5009
http://dx.doi.org/10.1890/1051-0761(2000)010[0626:HMSBCI]2.0.CO;2
http://dx.doi.org/10.1890/1051-0761(2000)010[0626:HMSBCI]2.0.CO;2
http://dx.doi.org/10.1029/2002WR001571
http://dx.doi.org/10.1899/0887-3593(2007)26[152:EOMEOI]2.0.CO;2

	Effects of measurement error on the strength �of concentration-response relationships in aquatic toxicology
	Abstract
	Introduction
	Methods
	Mathematical details
	Simulation study
	Results and discussion
	Conclusions
	Acknowledgments
	Appendix: R code for the bootstrap procedures used to calculate confidence intervals for the de-noising procedure.
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


