Assessing incomplete sampling of disease transmission networks

Dept. Mathematical Sciences, Montana State University

Derek Sonderegger, PhD - Northern Arizona University

March 13, 2019

Colaborators

 Work that I have done with the Pathogen and Microbiome Institute at NAU and we are just a couple months into the project.

- Dr Paul Keim
- Dr Jason Sahl

Background Information

Two worrisome Healthcare Aquired Infections (HAIs)

- MRSA
 - Methicillin-resistant Staphylococcus aureus
 - Resistant to many common antibiotics
- ► C. Diff
 - Clostridioides difficile
 - Our disease of interest

Clostridioides difficile

- A spore-forming bacteria
 - Spores can survive for months in the environment
 - Bacteria die when exposed to oxygen.
 - Very difficult to work with in the lab.
- C. diff is widely distributed
 - Spores are widely found in the environment
 - People and animals can be asymptomatic carriers
- Resistant to many commonly used antibiotics

Human Infection

- Causes diarrhea, fever, nausea, and abdominal pain
- Spread through fecal contamination
- Additional \$4.8 billion each year in health care costs
 - 290,000 Americans sickened by the bacteria in a hospital or other health care facility each year.
 - ► 27,000 people in the U.S. die while infected with *C. diff* annually.

Common infection cycle

- In a healthy gut biome, C. diff can't strongly establish due to bacterial competition.
- In patients under a common antibiotic treatment, C. diff can flourish.
- Prescribed antibiotics for some other reason (e.g. pneumonia)
 - *C. diff* might already be present in the patient.
 - ► Come into contact with *C. diff* via live bacteria or spores from another patient.

Medicare Implications

- Won't reimburse costs for treating infections acquired at a healthcare facility
- If the rate of Healthcare Acquired Infections (HAIs) is too high, Medicare will deduct one percent from their OVERALL reimbursements to the facility.
- Medicare defines any diagnosis of C. diff that occurs 3 days after admission as "healthcare acquired".

Goal: Estimate HAI rate

- Individual patients have the genome of their strain of C. diff sequenced.
- Group strains into clusters if they differ by at most 2 SNPs.
 - Use Single-Linkage clustering method: represents evolution along a chain of infections
 - Within patient variability suggests that maybe this needs to be evaluated.

Data!

Oxfordshire Data

- Eyre et al 2013 describes a study which genotyped nearly all cases of C. diff in over three years in Oxfordshire, UK.
- Of the 1250 cases that were evaluated, N = 1223 were successfully genotyped.

Oxfordshire Time/Clusters

Oxfordshire Cluster Size Distribution

Defining HAI rate from full data

- For each cluster, the first time a strain is observed it is considered environmentally acquired.
- The second (or third, or fourth, ..) time a strain is observed, it is healthcare acquired.

$$\begin{aligned} HAI &= \frac{N - ||\mathcal{I}||}{N} = 1 - \frac{||\mathcal{I}||}{N} \\ N &= \text{Number of Patients} \\ \mathcal{I} &= \text{Set of strain identifiers} \\ ||\mathcal{I}|| &= \text{Actual Number of Clusters/Strains} \end{aligned}$$

• Knowing $||\mathcal{I}||$ is the key to calculating HAI rate!

Observed Number of Clusters/Strains under Simple Random Sampling

$$\widehat{HAI}_{naive} = 1 - \frac{||I||}{n}$$

$$n = \text{ sample size}$$

$$I = \text{ Set of observed strains}$$

$$||I|| = \text{ Observed Number of Clusters/Strains}$$

Does the Naive Estimator Work?

Why doesn't this work?

Better Estimators?

HyperGeometric?

Let

- n_i be the number of patients with strain *i*. (This is unknown!)
- ▶ *m_i* be the observed number of patients with strain *i*.
- α be the sampling percentage.

$$n_i \stackrel{iid}{\sim} \operatorname{ZTPoisson}(\lambda)$$
 for $i \in \mathcal{I}$

 $m_i | n_i \sim \text{ZTHyperGeometric}(n_i, N - n_i, \alpha N)$ for $i \in I$

$$E(m_i|n_i) = (1 - f(0|n_i))^{-1} \alpha n_i$$

where I is a subset of \mathcal{I} and the ZT represents the zero truncated distributions.

HyperGeometric?

$$f(0|n_i) = \frac{\binom{n_i}{0}\binom{N-n_i}{\alpha N}}{\binom{N}{\alpha N}}$$

$$E[m_i] = E[E(m_i|n_i)] = E[(1 - f(0|n_i))^{-1} \alpha n_i]$$

Can we just ignore the expectation?

One estimator is to ignore the expectation and solve the following equation for \hat{n}_i .

$$m_i = (1 - f(0|\widehat{n}_i))^{-1} \alpha \widehat{n}_i$$

which needs to be solved via numerical methods because the "chooses" in $f(0|\hat{n}_i)$.

$$\widehat{HAI}_{hyper} = 1 - \frac{||I||}{\widehat{n}}$$
$$\widehat{n} = \sum \widehat{n}_i$$

I = Set of observed strains

||I|| = Observed Number of Clusters/Strains

Species Abundance Methods

- A well studied problem is estimating the total number of species based on repeated surveys.
- Each patient represents a survey, which might produce a new strain, or one that has already been seen.
- Several estimators for this problem
 - Chao, Jacknife1, Jacknife2, Bootstrap
 - I'll show Chao and Jacknife
- Used vegan::specpool

Estimators of Oxford Data

Simulated Populations

The Oxfordshire data could be reasonably modeled using a mixture of two distributions to separate the small clusters sizes from the large. We chose to model the small clusters sizes using a truncated Poisson distribution with the zero truncated out. The large cluster sizes were modeled from a logNormal distribution.

$$n_i \sim egin{cases} {
m TPoisson}(\lambda) & {
m with \ probability \ 1-lpha} \ \log {
m Normal}(\mu,\sigma) & {
m with \ probability \ lpha} \end{cases}$$

for i in \mathcal{I} .

Simulated Populations

Simulated Populations

Simulated Data: Naive method

Simulated Data: Chao

Simulated Data: Hypergeometric

Next Steps

- Improve Large Cluster Estimation
 - Evaluate

$$E\left[\binom{N-n_i}{\alpha N}\alpha n_i\right]$$

- Stirling's Approximation?
- Needs some assumptions about distribution of n_i.
- Confidence Interval for HAI
 - Bootstrap clusters or patients?