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Theoretical and empirical studies suggest that some
ecosystems may show abrupt, non-linear changes in

one or more response variables in response to environ-
mental drivers (May 1977; Connell and Sousa 1983;
Knowlton 1992; Estes and Duggins 1995; Groffman et al.
2006). Shifts to alternative stable states have been
reported in a variety of ecosystems, including lakes, coral
reefs, deserts, and oceans (Scheffer et al. 2001). These
shifts can be triggered by natural disturbance, such as fire
or flooding, or anthropogenic factors, such as climate
change, nutrient accumulation, exotic species, and toxic
chemicals. Although communities may recover from nat-
ural disturbance through successional processes, human-
induced disturbances are often unprecedented and move
ecological systems to novel, alternative states (Holling
1986; Folke et al. 2002). In addition, if ecosystems are
chronically stressed due to natural or anthropogenic dis-
turbances, such systems may move to alternative states
that remain stable, even when the stressors are removed
(eg Carpenter 2001; Scheffer et al. 2001; van Nes et al.
2002; Scheffer and Carpenter 2003).

One can consider thresholds as ecological non-lineari-
ties, where substantial changes in an ecological state
variable are a consequence of small, continuous changes
in an independent (stressor) variable (Muraian 2001).
The point or region at which rapid change initially
occurs defines the threshold. Near this point, small
changes in stressor intensity produce large effects on state
variables. Unfortunately, there can be an inherent arbi-
trariness to the threshold concept, because it does not
take into account whether the change in the value of the

state variable is ecologically relevant. Statistical models
have been developed in other disciplines, to detect break-
points in non-linear response functions, but it is not
always clear which models are appropriate for a particular
ecological dataset.

Here, we demonstrate a method by Chaudhuri and
Marron (1999) that makes few model assumptions and is
therefore suitable for a broad range of ecological prob-
lems.  Their method, “significant zero crossings” (SiZer),
applies a non-parametric smoother to the stressor–
response data, and then examines the derivatives of the
smoothed curve to identify the existence of a threshold.
To illustrate this method, we consider benthic macroin-
vertebrate data collected on the Arkansas River, a metal-
polluted stream in Colorado. We use SiZer to examine
the nature of the threshold(s) and to select between two
competing threshold models. We then use SiZer in a mul-
tivariate setting by examining the first axis of the canon-
ical discriminant analysis for the same dataset.  Similar to
principal components analysis, this axis is the linear com-
bination of the 20 dominate taxa, that contains the most
yearly variation. 

� Data

The Arkansas River (Figure 1) is located in the southern
Rocky Mountain ecoregion of Colorado. Mining opera-
tions in this watershed have had a major impact since the
mid-1800s, when gold was discovered near Leadville,
CO. Concentrations of heavy metals, particularly cad-
mium (Cd), copper (Cu), and zinc (Zn), are greatly ele-
vated downstream from Leadville and often exceed
acutely toxic levels (Clements 2004). Over the past 18
years (1989–2006), physiochemical characteristics, habi-
tat quality, heavy metal concentrations, and the
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Ecological systems can change substantially in response to small shifts in environmental conditions. Such
changes are characterized by a non-linear relationship between the value of the response variable and one or
more explanatory variables. Documenting the magnitude of change and the environmental conditions that
give rise to these threshold responses is important for both the scientific community and the agencies charged
with ecosystem management. A threshold is defined as a substantial change in a response variable, given a mar-
ginal change in environmental conditions. Here, we demonstrate the usefulness of a derivative-based method
for detecting ecological thresholds along a single explanatory variable. The “significant zero crossings” (SiZer)
approach uses a non-parametric method to approximate the response function and its derivatives and then
examines how those functions change across the range of the explanatory variable. SiZer makes fewer assump-
tions than conventional threshold models and explores a full range of smoothing functions. We believe SiZer is
a useful technique for the exploratory analysis of many ecological datasets. 
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responses of macroinvertebrate communities were quan-
tified at several stations in the Upper Arkansas River
Basin. In 1993, 4 years after this research program began,
state and federal agencies initiated a large-scale restora-
tion program designed to improve water quality in the
Arkansas River. To quantify recovery, we examined tem-
poral changes in the abundance of metal-sensitive
mayflies (Ephemeroptera: Heptageniidae) collected in
the fall from 1989 to 2006. During each of the 18 years,
five replicate samples were taken. The mayfly counts
were transformed (square root) to stabilize the variance.
Recovery was defined as the threshold where mayfly
abundance became asymptotic. While the study was pri-
marily concerned with the effect of heavy metal pollu-
tion, this paper uses time as the independent variable for
clearer illustration of the method. 

� SiZer approach

Derivative definition of thresholds

An intuitive way of defining a threshold for a state vari-
able that is a continuous function of an environmental
driver is to consider where the function’s derivatives
change significantly. Non-parametric smoothers provide
a method for finding a smooth response function that is
data driven and requires only weak assumptions.
Smoothing splines (Green and Silverman 1993; Wahba
1975), LOESS (Cleveland and Devlin 1988) and  locally
weighted polynomial regression (Fan and Gijbels 1996)
are well known. These techniques result in an estimated
smooth response function, the estimated derivative(s),
and confidence intervals (CIs) for the functions and

derivatives. The SiZer methodology
can be implemented using any of these
techniques, but we have restricted our
discussion to locally weighted polyno-
mials. All SiZer CIs in this paper are
reported at the 95% level, based on
Hannig and Marron (2006) row-wise
intervals.

In the Arkansas River data, both a
piecewise linear (PL; Barrowman and
Myers 2000; Toms and Lesperance
2003) or bent-cable (BC; Chiu et al.
2006) model would fit the data. Both
models assume a linear relationship
with a single threshold. The difference
is that the PL model assumes an abrupt
transition between the linear sections,
whereas the BC model assumes a qua-
dratic bend connecting the two linear
pieces. The PL model is a simple case of
the BC model where the half-width of
the bend is zero.

Traditional model selection methods,
such as Akaike’s information criterion

(Burnham and Anderson 2002), do not decisively rate
one model over the other. The difference between AIC
values is 1.82 in favor of the PL model. However, an
inverted likelihood ratio test (Seber and Wild 1989)
resulted in a 95% CI for the half-width of the quadratic
bend that does not contain zero (0.04, 5.52). Point esti-
mates of the threshold were similar for the PL and BC
models (1996.7, 1996.1), but 95% bootstrap CIs for the
threshold were (1994.6, 1997.5) and (1989.0, 2000.0),
respectively.

Using a non-parametric smoother, researchers can
classify every point along the independent axis into one
of three states: the estimated slope is positive (ie the CI
of the first derivative contains only positive values),
possibly zero (the CI contains zero), or negative (the CI
contains only negative values). Each point could be
similarly classified by the estimated second (or higher
order) derivative.

Many interesting relationships can be found by exam-
ining the state changes of the derivatives. By noting how
many times the state of the first derivative changes, infer-
ence about where the true relationship is increasing or
decreasing can be made. The Arkansas River data show
that abundance of mayflies is clearly increasing, then
flattens out and seems to decrease slightly near x = 2002.
The second derivative contains information about the
curvature of the data. At small x values, the second deriv-
ative could be zero, indicating that there is little or no
curvature. However, between 1994 and 2000, the second
derivative is significantly negative, indicating that the
function is concave down and providing support in the
data for the BC model.

There is no mathematical reason to partition the curve

FFiigguurree 11.. The Arkansas River after restoration efforts, 200 meters downstream of
the confluence with the California Gulch.
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mial regression, the tuning parameter h is the width para-
meter of the kernel function and is commonly referred to
as the bandwidth. Other common choices for the kernel
function include the uniform density and triangle density
functions. Here, we use the normal kernel.

The novel aspect of SiZer (Chaudhuri and Marron
2000) is that it considers all reasonable bandwidth values
and exploits the notion that different values provide dif-
ferent information about the data. The SiZer approach
explores how the derivative changes along the indepen-
dent axis, as well as across the range of bandwidth values,
and displays this information in one image (Figure 2). To
read the SiZer map, first notice that the y axis represents
the bandwidth parameter h, displayed in units of log(h)
for visual clarity. Wherever the map is blue, the deriva-
tive is significantly increasing; wherever it is purple, the
derivative is possibly zero; and wherever it is red, the
derivative is significantly decreasing. At very small band-
widths, f

^’(x0) is influenced by a small number of data
points, and gray areas in the SiZer map indicate that the
estimated effective sample size (Chaudhuri and Marron
1999) is less than five. The white lines give a visual rep-
resentation of the size of the bandwidth. The horizontal
distance between the lines is drawn to be 2h, indicating
the effective width of the locally weighted polynomial.

To demonstrate the effect of bandwidth on the smooth-
ing function, Figure 2 displays Arkansas River data with
three different choices of bandwidth h, each highlighted
by the horizontal black line in the adjacent SiZer maps.

by where the derivative is different than
zero. A similar procedure could be
implemented to partition the x axis into
segments that have a derivative different
than 5, for example. However, the
choice to partition on f

^’(x) = 0  is appro-
priate for many ecological problems in
which the increase or decrease of the
response variable is of interest. More-
over, detecting a change in the rate of
increase (or decrease) can be made by
second derivative, because a change of
rate causes curvature. 

Given a small number of models that
are thought to quantify a researcher’s
beliefs and hypotheses about a system,
traditional model selection methods such
as AIC, AICc, Mallows  Cp, and good-
ness-of-fit tests (Kutner et al. 2005) fail to
directly explain why one model is
selected over another. By using a deriva-
tive-based method in the process of model
selection, the researcher can investigate
how the data support one model over the
other, or what assumptions in a model are
being violated. The non-parametric
implementation allows the researcher to
examine a broad range of questions,
including the number of thresholds in a system.

� Smoothing bandwidths

One complication of the derivative approach is the esti-
mation of the smoothed function and its derivative(s).
Most non-parametric smoothing algorithms, including
smoothing splines and locally weighted polynomial
regression, have a tuning parameter that controls the
smoothness of the resulting curve. By manipulating this
parameter, the resulting smoothing function can range
from a simple linear regression to perfectly (over)fitting
the data. There are several methods for selecting the tun-
ing parameter (Fan and Gijbels 1995; Ruppert et al. 1995;
Hengartner et al. 2002), but none are uniformly superior.

SiZer, as proposed and implemented by Chaudhuri and
Marron (1999) and Hannig and Marron (2006), uses the
idea of locally weighted polynomial regression (Fan and
Gijbels 1996; Loader 1999). When the weight function
(also called a kernel function) is the normal density
curve, the level of smoothing is controlled by the stan-
dard deviation of the kernel. For a given tuning para-
meter h, and a given point x0, f

^’(x0) is obtained by weight-
ing the data points according to a normal curve centered
at  x0, with a standard deviation � = h. This means that
data close to x0 (eg within ± h) have a major influence
over the smoothing function, data between h and 2h
away are less influential, and data farther than 2h from x0

have only a slight influence. In locally weighted polyno-

FFiigguurree  22.. SiZer maps of the Arkansas River data and associated smoothing
functions at three different bandwidths. SiZer maps categorize the derivative as
positive (blue), negative (red), or possibly zero (purple). The black lines in the SiZer
maps show bandwidth parameter corresponding to the three smoothing functions.
The bandwidth h = 7 is clearly over-smoothing the data and does not capture the
flatness (or decrease) in the second half of the data. The bandwidth h = 0.75 is
under-smoothing the data and is being affected by random perturbations in the data.  
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when viewing a tree from a distance (ie at large band-
widths), only gross features are discernible, so, as the
observer gets closer to the tree (ie as the bandwidth
decreases), the overall pattern cannot be seen, but
smaller features come into focus. Only by examining the
function across a range of bandwidths can a researcher
gain a clear understanding of the data.

SiZer cannot, however, always estimate the location of
the threshold. Because f

^ is calculated from nearby values, if
f has a threshold at x = �, then f

^ is not necessarily first
affected by the threshold at x = �. Furthermore, where f

^ is
affected by the threshold changes with the bandwidth. This
phenomenon can be seen in the Arkansas River example:
the threshold from an increasing to a flat function drifts
from near 1995 to 2004 as the bandwidth increases.

Using SiZer to identify multiple thresholds

Multivariate analysis of macroinvertebrate data collected
from the Arkansas River provided an opportunity to inves-
tigate ecological thresholds in community composition
over the duration of the monitoring project. In this exam-
ple, canonical discriminant analysis was used to examine
differences among years, based on abundance of the 20
dominant taxa. A threshold response in this example rep-
resents an abrupt shift in community composition from
one year to the next. Ignoring the issue of non-indepen-
dence of observations in multivariate space, we applied
SiZer to the first canonical axis, which explained 58.2% of
the total variation (Figure 4). The first derivative shows a
generally increasing function, but there is a sharp decreas-
ing trend between 1995 and 1997. These results reflect
macroinvertebrate community responses to changes in
water quality from 1989 to 2006. Heavy metal concentra-
tions declined from 1989–1994, increased abruptly in 1995
and 1996, and then declined again as a result of ongoing
restoration in the Arkansas River (Clements 2004). 

The second derivative from the SiZer plot shows two dis-
tinct thresholds. The first, near 1996, is a change from con-
cave down to concave up. The second, near 2000, is a
change from concave up to concave down. At intermediate
smoothing levels near 1996, the 95% CI goes from being
less than zero, to containing zero, to being greater than zero.
For the second threshold, near 2000, which is a result of
macroinvertebrate community recovery after improve-
ments in water quality, the 95% CI changes from being
greater than zero, to containing zero, to being less than zero.

� Discussion

Fitting mathematical models to observed data is difficult,
in part because of the uncertainty in model selection.
Traditional model selection methods tend to encourage
examination of vast numbers of models. Burnham and
Anderson (2002) address this issue by differentiating
exploratory studies from confirmatory ones. When this is
not possible, inference must be made carefully to avoid

The bottom left graph represents a smoothing parameter
that is too large (h = 7) and has over-smoothed the data
and fails to detect the transition from an increasing to a
flat (or possibly decreasing) function. At this scale of
view, the first derivative SiZer row is completely blue,
suggesting an increasing function with no threshold. The
second derivative is negative (red), indicating that there
is downward curvature in the function. At an intermedi-
ate level of smoothing (h = 2), the smoother captures the
initial increasing section and transition to a flat function,
as indicated by the first derivative SiZer map. The second
derivative map shows that the function is reasonably lin-
ear, except for a region of concavity in the middle and a
second region of convexity near 2004. The piecewise lin-
ear and bent-cable models presented in Figure 3 capture
features that are visible at this scale. At a very low level of
smoothing (h = 0.75), at any given point, the smoother is
being influenced by a very small number of data points
(estimated effective sample size ~15). Consequently, the
power of testing if the derivative(s) are not equal to zero
is low. In this study, researchers were not particularly
interested in annual variation, but wanted to detect
trends occurring over multiple years associated with
recovery of this system; therefore, bandwidths h > 1(log10

h > 0) should be considered.  After considering each of
these bandwidths, particularly h near 2, the data support
the bent-cable model over the piecewise linear model,
because of the curvature near the threshold at the inter-
mediate bandwidths. However, the SiZer analysis suggests
considering a model with two threshold points to account
for the decrease near 2003.

Because the SiZer map contains information at many
different scales, there is seldom a “best” bandwidth to
examine. Therefore, we recommend an evaluation of the
derivative at different resolutions of the data. Just as

FFiigguurree 33.. The Arkansas River mayfly data fit by the piecewise
linear (black, solid, threshold = 1996.7, CI = 1994.6, 1997.5)
and bent-cable (red, dashed, threshold = 1996.1, CI = 1989.0,
2000.0) models.
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inflated Type I errors (including a variable in the model
when, in fact, it has no effect on the response), due to
picking the “best” model for the data. As presented here,
SiZer is most naturally used in exploratory studies, but if
sufficient data are available, part of the data may be used
for exploratory model selection and the other part used
for inference. Burnham and Anderson (2002) also
strongly advocate only examining models that have
sound scientific explanations. Since SiZer encourages the
practitioner to create an appropriate response function
from the SiZer map, the ecological justification and
empirical evidence for a particular form of the response
function can be combined. This should result in small
numbers of models, to be used in subsequent model selec-
tion steps or model averaging. SiZer also separates the
question of statistical significance from ecological signifi-
cance, by showing the statistically significant features at
each bandwidth and then allowing the researcher to
decide which features are important.

Fitting threshold models is particularly difficult, because
researchers often assume that the existence and number of
thresholds are known. For example, a piecewise linear
analysis will always find a single threshold, regardless of
whether the true functional relationship contains no
threshold or multiple thresholds. SiZer can provide insight
into the number of thresholds and general form of the rela-
tionship. Unfortunately, SiZer cannot provide estimates
and confidence regions for the thresholds it detects. SiZer
can only be used to select a model; a model fitting proce-
dure such as maximum likelihood estimation must be used
subsequently. Furthermore, by definition, SiZer can only
address thresholds in the context of changes in state of the
derivative. Uniform or gradual changes that lead to irre-
versible state changes are not detectable by SiZer.

The mathematics that SiZer employs can be readily
extended to multiple dimensions by using the multidi-
mensional gradient rather than the one-dimensional
derivative (Godtliebsen et al. 2002); however, SiZer’s
main strength, its graphical presentation, cannot be eas-

ily extended past two dimensions. Covariates can be
accounted for in an additive fashion, by using SiZer on
the non-parametric portion of a generalized additive
model (GAM). Finally, one direction for future research
is to extend SiZer to work with local quantile regression
instead of local mean regression. Pointwise estimates of
the quantile function should not be difficult to obtain,
but appropriate row-wise CIs might be.

A Matlab implementation of SiZer has been made
available by S Marron (www.stat.unc.edu/faculty/mar-
ron/marron_software.html). An R package of SiZer,
along with code for the piecewise linear and bent-cable
models, is available on the Comprehensive R Archive
Network (www.cran.r-project.org).
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